A Compressed PCA Subspace Method for Anomaly Detection in High-Dimensional Data
نویسندگان
چکیده
منابع مشابه
Outlying Subspace Detection for High-Dimensional Data
Knowledge discovery in databases, commonly referred to as data mining, has attracted enormous research efforts from different domains such as databases, statistics, artificial intelligence, data visualization, and so forth in the past decade. Most of the research work in data mining such as clustering, association rules mining, and classification focus on discovering large patterns from databas...
متن کاملOutlying Subspace Detection for High- dimensional Data
Knowledge discovery in databases, commonly referred to as data mining, has attracted enormous research efforts from different domains such as database, statistics, artificial intelligence, data visualization, etc, in the past decade. Most of the research work in data mining such as clustering, association rules mining and classification focus on discovering the “large patterns” from databases (...
متن کاملAbnormal Subspace Sparse PCA for Anomaly Detection and Interpretation
The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCAbased model for anomaly detection and interpretation. The propose ASPCAmodel constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected a...
متن کاملHigh-dimensional Outlier Detection: the Subspace Method
" In view of all that we have said in the foregoing sections, the many obstacles we appear to have surmounted, what casts the pall over our victory celebration? It is the curse of dimensionality, a malediction that has plagued the scientist from the earliest days. " – Richard Bellman 1. Introduction Many real data sets are very high dimensional. In some scenarios, real data sets may contain hun...
متن کاملA New Subspace Method for Anomaly Detection in Hyperspectral Imagery
Recently, anomaly detection has been one of the most interesting researches in hyperspectral images (HSIs) applications. Generally, anomalies in HSIs are rare pixels. The Reed–Xiaoli (RX) algorithm is a benchmark anomaly detector for HSIs, which uses the local Gaussian model generally [1]. But for RX algorithm there are two issues to be considered. First it requires the estimation of model para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2013
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2013.2278017